Effect of HNO₃ and HCl on D₂O Desorption Kinetics from Crystalline D₂O Ice

Frank E. Livingston and Steven M. George*

Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215 Received: June 15, 1998; In Final Form: October 14, 1998

The presence of trace species may perturb H_2O desorption kinetics from ice surfaces and alter the stability of atmospheric ice particles. To investigate the effects of atmospheric species on H₂O desorption kinetics from crystalline ice, the D_2O desorption kinetics from pure and HNO_3 - and HCl-dosed crystalline D_2O ice multilayers on Ru(001) were investigated using isothermal laser-induced thermal desorption (LITD) measurements. The D_2O desorption kinetics were studied for D_2O ice film thicknesses of 25–200 BL (90– 730 Å) and initial acid coverages of 0.5–3.0 BL for HNO₃ and 0.3–5.0 BL for HCl. Arrhenius analysis of the D₂O desorption rates from pure D₂O crystalline ice at T = 150-171 K yielded a desorption activation energy of $E_d = 13.7 \pm 0.5$ kcal/mol and a zero-order desorption preexponential of $\nu_0 = (3.3 \pm 0.7) \times 10^{32}$ molecules/(cm² s). The absolute D_2O desorption rates were $\sim 3-5$ times smaller for D_2O ice films exposed to HNO₃. The D₂O desorption kinetics from HNO₃-dosed ice were $E_{\rm d} = 11.3 \pm 0.4$ kcal/mol and $\nu_{\rm o} = (5.0 \pm 1.0 \pm 0.01)$ \pm 0.9) \times 10²⁸ molecules/(cm² s). In contrast, the absolute D₂O desorption rates were \sim 2 times larger for D_2O ice films exposed to HCl. The D_2O desorption kinetics from HCl-dosed ice were $E_d = 14.2 \pm 0.6$ kcal/mol and $v_0 = (3.7 \pm 0.8) \times 10^{33}$ molecules/(cm² s). The changes in the D₂O isothermal desorption kinetics were independent of DNO₃ and DCl coverages. The adsorbate-induced perturbations are believed to be associated with the formation of stable hydrate cages and reduced D₂O mobility in HNO₃-dosed ice and the creation of defects and enhanced D₂O mobility in HCl-dosed ice. The effects of HNO₃ and HCl on the D₂O desorption kinetics indicate that the growth, stability, and lifetimes of atmospheric ice particles should be altered by the presence of adsorbates on the ice surface.

I. Introduction

Ice surfaces are prevalent in nature and play a special role in global atmospheric and environmental chemistry,^{1–5} as well as cometary and interstellar chemistry.^{6–12} Particular attention has been focused on the role of ice particles in the heterogeneous chemistry of the Antarctic polar stratosphere^{1–5,13–18} and upper troposphere.^{19–25} For example, polar stratospheric cloud (PSC) particles are an important component in the seasonal depletion of ozone in the Antarctic.^{1,2,4,5,13,16–18} Stratospheric ice particles, composed of either concentrated solutions of nitric acid (type I PSC) or water—ice (type II PSC) convert stable forms of reservoir chlorine into photochemically labile chlorine species by heterogeneous reactions such as ClONO₂ + HCl \rightarrow Cl₂ + HNO₃. The active chlorine molecules can then be photolyzed to produce Cl radicals that can catalytically destroy ozone.

Chemical and physical processes on cirrus ice clouds can also have a direct and dramatic impact on tropospheric chemistry.^{19,20,23–25} Recent experimental measurements^{26–30} and modeling simulations¹⁹ have been combined to show that heterogeneous chlorine activation on cirrus clouds could severely affect the chlorine and ozone levels in the tropopause region. In particular, these modeling studies have revealed that heterogeneous reactions involving ClONO₂, HCl, and HOCl on cirrus ice particles occur rapidly and can markedly affect NO_x and ClO_x chemistry in the upper troposphere.¹⁹

Subvisible cirrus clouds located predominantly near the tropical tropopause can also significantly affect the Earth's climate and the global radiation budget.^{20,23-25} Thin highly

reflective cirrus ice particles can alter climate feedback loops by the efficient absorption of longwave infrared radiation and emission at the low temperatures of the tropical tropopause.^{20,25} These radiative effects may perturb circulation in the lower stratosphere³¹ and cause dehydration of stratospheric air via freeze-drying and radiative destabilization of high altitude anvils.^{32,33}

Optical interference techniques^{34,35} and laser-induced thermal desorption (LITD) probing and desorption depth-profiling methods³⁶⁻⁴⁰ have been employed recently to study adsorption, desorption, and diffusion processes on single-crystal ice. The optical interference measurements^{34,35} have demonstrated that the ice surface is in rapid dynamic flux with H₂O molecules desorbing from the ice at rates of approximately 1×10^{16} to 1 \times 10¹⁸ molecules/(cm² s) or ~10-1100 BL/s at typical polar stratospheric temperatures from 180 to 210 K. The LITD diffusion measurements³⁶⁻⁴⁰ have further revealed that H₂O molecules readily diffuse into the pure crystalline ice bulk on the microsecond to millisecond time scale at stratospheric temperatures. The dynamic nature of the ice surface may influence the kinetics and mechanisms of the important heterogeneous reactions on PSCs and cirrus ice clouds.^{34,41} The formation, growth, and stability of ice particles in the troposphere and stratosphere will also be dependent on these H₂O adsorption, desorption, and diffusion kinetics.

Many previous investigations have studied H_2O desorption from crystalline and amorphous ice.^{36–39,42–46} Recent studies have confirmed that H_2O desorption from crystalline ice follows zero-order desorption behavior.³⁹ The zero-order isothermal desorption rate is constant versus time and consistent with the linear removal of H_2O from the crystalline ice multilayer. In

^{*} Corresponding author: fax, 303-492-5894; e-mail: georges@ spot.colorado.edu.

Figure 1. Schematic representation of the laser-induced thermal desorption (LITD) experimental apparatus.

contrast, only limited work has focused on the effects of surface-adsorbed species on the vaporization kinetics of crystalline ice. $^{44,47-49}$

The presence of trace tropospheric and stratospheric species, such as HNO_3 and HCl, may perturb the adsorption, desorption, and diffusion kinetics of H_2O on crystalline ice. Early work investigated the effects of various impurities and observed that the ionic impurities generally decreased the overall vaporization rates of the ice crystals.⁴⁴ A recent study of the effect of HCl, HNO_3 , and SO_2 also concluded that these gases reduce the H_2O evaporation rate from ice.⁴⁹ In addition, computer modeling studies have explored the effects of trace solutes and have determined that solute impurities significantly retard the evaporation rate of ice crystals.^{50,51}

To investigate the effects of trace atmospheric species on the dynamic nature of ice, the present study measured the D₂O desorption kinetics from pure and HNO3- and HCl-dosed singlecrystal D₂O ice multilayers. The crystalline D₂O ice films were grown epitaxially on a single-crystal Ru(001) metal substrate. Measurements of the D₂O desorption kinetics were accomplished using laser-induced thermal desorption (LITD) probing.^{36–38,46} The LITD experiments permitted the D₂O coverage to be monitored in real time during isothermal multilayer desorption. The temperature dependence of the desorption rates yielded the activation energies and preexponentials for D₂O desorption from pure and HNO₃- and HCldosed ice multilayers. These D₂O desorption kinetics were also employed to estimate the D₂O vapor pressure of pure and HNO₃and HCl-dosed crystalline D₂O ice and to determine the effect of HNO₃ and HCl on the stability of atmospheric ice particles.

II. Experimental Section

A. Laser-Induced Thermal Desorption (LITD) Experimental Apparatus. The LITD experimental apparatus employed in the isothermal desorption measurements is shown in Figure 1.5^2 Briefly, the LITD measurements were performed in an ultrahigh vacuum (UHV) chamber pumped by ion and titanium sublimation pumps. Typical background pressures in the UHV apparatus were less than 2×10^{-10} Torr. A single-crystal Ru(001) metal substrate ~1 cm in diameter was used to grow crystalline D₂O ice multilayers. Trace elemental C, S, and O contaminants were removed from the Ru(001) surface using standard cleaning procedures.⁵³ The ice film surface structure and surface cleanliness of the Ru(001) metal substrate were verified using low-energy electron diffraction (LEED) and Auger electron spectroscopy (AES) with a single-pass cylindrical mirror analyzer.

The desorption experiments were performed by monitoring the D₂O coverage on the Ru(001) substrate during isothermal desorption. A TEM-00 Q-switched Nd:phosphate glass laser was used to desorb thermally the ultrathin crystalline ice film. The Q-switched Nd:phosphate glass laser has an output wavelength of $\lambda = 1.06 \,\mu\text{m}$ and typical pulselengths of ~100 ns. Laser pulses with energies of ~0.20 mJ/pulse were focused onto the Ru(001) substrate at an incident angle of 54° with respect to the surface normal. This optical geometry produced elliptical desorption areas with typical dimensions of ~150 $\mu\text{m} \times \sim 250$ μm as measured by spatial autocorrelation methods.⁵⁴

The crystalline D₂O ice film is transparent to the $\lambda = 1.06 \ \mu m$ infrared radiation.⁵⁵ The incident Nd:phosphate glass laser energy is absorbed efficiently by the underlying Ru(001) metal substrate.⁵⁶ The illuminated surface area experiences a rapid temperature transient and the molecules in the column region above the focused laser beam are thermally desorbed. The desorbed species are mass analyzed with high sensitivity using an Extrel C50 quadrupole mass spectrometer with line-of-sight to the ionizer.

B. Growth of Crystalline Ice Multilayers. To study H₂O isothermal desorption on ice that structurally resembles hexagonal ice particles present in the troposphere and stratosphere, single-crystal ice multilayers were grown epitaxially on a single-crystal Ru(001) metal substrate. The single-crystal Ru(001) metal has an excellent lattice match to the geometry of naturally occurring hexagonal ice. The lattice constant of the $\sqrt{3} \times \sqrt{3}$ R30° unit cell on Ru(001) is 4.68 Å⁵⁷ which closely matches the nearest-neighbor oxygen—oxygen distance of 4.50 Å in the first bilayer on the basal plane of I_h ice.⁵⁸ The close lattice match facilitates the epitaxial growth of highly ordered crystalline ice multilayers with minimal distortion (<4%) of the hexagonal ice lattice.

Gaseous isotopically labeled water (D₂O, \geq 99.996% ²H, Cambridge Isotope Laboratories) was adsorbed on the Ru(001) substrate using a glass multichannel capillary array doser. The crystalline D₂O ice multilayers were grown by either capillary array D₂O vapor deposition at 160 K or by dosing D₂O at 120 K followed by multilayer annealing at 160 K.^{37,38} Previous LEED measurements on H₂O ice multilayers have confirmed that both methods of ice multilayer preparation yield well ordered hexagonal ice films.³⁶

C. Measurement of Isothermal Desorption by LITD. Measurements of D₂O desorption from pure and HNO₃- and HCl-dosed crystalline D₂O ice films were performed by LITD monitoring of the D₂O coverage (Θ) in real time during isothermal desorption. A crystalline D₂O ice multilayer was initially grown on the Ru(001) substrate. LITD analysis of the crystalline ice multilayer was conducted prior to adsorbate exposure to check for the adsorption of background H₂O and HDO impurities. LITD analysis confirmed that the D₂O ice films were pure with a typical initial HDO impurity content of \leq 0.7%.

The D₂O ice multilayer was then exposed to either nitric acid (HNO₃) or hydrogen chloride (HCl) at 120 K using a separate capillary array doser. Rapid H/D isotopic exchange at the multilayer surface resulted in the formation of a HDO adlayer along with a stoichiometric quantity of DNO₃ or DCl. Typical HNO₃ and HCl exposures were performed at pressures ranging from $\sim 1 \times 10^{-7}$ Torr to $\sim 1 \times 10^{-6}$ Torr for times from 10 to 30 s. Although the interaction of HNO₃ and HCl with ice may eventually lead to the formation of macroscopic stable HNO₃– hydrate^{48,59–65} and HCl–hydrate^{47,62,66–69} phases, formation of these hydrates is unlikely given the small HNO₃ and HCl

Figure 2. Normalized D₂O LITD signals versus time for isothermal desorption at T = 165.0 K of a pure 25 BL D₂O ice multilayer and a 25 BL D₂O ice multilayer dosed with 2 BL of HNO₃. The D₂O LITD signals for the pure ice film and the HNO₃-dosed ice film are represented by the open triangles and solid circles, respectively.

exposures. The initial acid adlayer coverages were quantified by the HDO LITD signals resulting from H/D isotopic exchange.^{37,38,40} The acid coverages were low and ranged from only 0.5-3.0 BL for HNO₃ and 0.3-5.0 BL for HCl.

Initially, the crystalline ice temperature was maintained below 90 K using a liquid nitrogen cooled cryostat in direct thermal contact with the Ru(001) crystal. This low temperature prevents any thermal desorption of the ice film. The annealed crystalline D₂O ice multilayers were then resistively heated from <90 K to the desired desorption temperature at a rate of ~ 1 K/s. The ice crystal temperature was maintained at the desorption temperature and the D₂O coverage was measured by LITD probing in real time during isothermal desorption. For the LITD measurements, the laser beam was translated across the ice multilayer using mirrors mounted on piezoelectric translators equipped with optical encoders. The laser pulses interrogated the surface coverages at different spatial locations at different times. The D₂O coverages were monitored until the crystalline ice multilayer was completely desorbed from the Ru(001) substrate.

The HNO₃ vapor was extracted from a mixture of commercial nitric acid (HNO₃, Mallinckrodt, 69.4 wt %) and sulfuric acid (H₂SO₄, Mallinckrodt, 96.1 wt %) in a 1:3 volume ratio. The H₂SO₄ effectively removes trace water impurity from the source HNO₃.⁷⁰ The resulting vapor over the HNO₃/H₂SO₄ mixture is >95% HNO₃ by mass and contains only a small contribution from H₂O impurity.⁷⁰ The HNO₃/H₂SO₄ mixture was purified by several freeze–pump–thaw cycles with liquid nitrogen prior to use. Gaseous HCl was obtained from Aldrich Chemical Co., Inc. (HCl, >99% anhydrous grade) and used without further purification.

III. Results

A. Desorption of Pure and HNO₃-Dosed Crystalline Ice Multilayers. Figure 2 shows a comparison between the isothermal desorption of a pure D₂O ice multilayer and a D₂O ice multilayer that was exposed to HNO₃ prior to desorption at T = 165.0 K. The initial D₂O coverage for the pure and HNO₃dosed ice films was 25 BL as measured by LITD probing prior to isothermal desorption. The normalized D₂O LITD signals for the pure ice film and HNO₃-dosed ice film are represented by open triangles and solid circles, respectively. The solid lines represent linear least-squares fits to the D₂O isothermal desorption data. The initial HNO₃ adlayer coverage was 2 BL for the HNO₃-dosed ice multilayer. One bilayer (BL) is defined as 1.06

Figure 3. Normalized D₂O LITD signals versus time for isothermal desorption at T = 165.0 K of a pure 80 BL D₂O ice multilayer and a 80 BL D₂O ice multilayer dosed with 2 BL of HCl. The D₂O LITD signal for the pure ice film and the HCl-dosed ice film are represented by the open triangles and solid squares, respectively.

 \times 10^{15} molecules/cm² and corresponds to the number of H₂O molecules in the $\sqrt{3}\times\sqrt{3}R30^\circ$ ice-like bilayer on Ru(001).^{71}

The D₂O LITD signal for the 25 BL pure D₂O ice multilayer in Figure 2 decreases linearly versus time until the ice film is completely desorbed after ~140 s. The loss of D₂O versus time is consistent with zero-order desorption kinetics and linear D₂O removal with no significant changes in ice film surface area during isothermal desorption.³⁹ The slightly nonuniform D₂O spatial coverage distribution resulting from the multichannel capillary array doser introduces a scatter on the individual LITD signals of less than ±10%.³⁹ The measured isothermal desorption rate for the pure D₂O ice film at T = 165.0 K is ~1.9 × 10^{14} molecules/(cm² s) or ~0.2 BL/s and remains constant for ice multilayer thicknesses ranging from 25 to 200 BL D₂O. This LITD isothermal desorption data is in excellent agreement with the D₂O desorption kinetics measured previously using LITD spatial measurements and isothermal desorption flux analysis.³⁹

In comparison, the 25 BL D₂O ice film that was exposed to HNO₃ required approximately 525 s to desorb completely from the Ru(001) substrate. The desorption flux for the HNO₃-dosed D₂O ice multilayers was measured to be \sim 5.1 × 10¹³ molecules/ (cm² s) or \sim 0.05 BL/s. The isothermal desorption results in Figure 2 clearly reveal that the presence of HNO₃ on the ice multilayer surface markedly decreases the D₂O desorption rate by a factor of \sim 4 at *T* = 165.0 K. Similar reductions by factors by \sim 3–5 in the isothermal D₂O desorption rate were obtained for HNO₃-dosed crystalline ice multilayers for temperatures from 150 to 171 K. For these measurements, the D₂O ice multilayers ranged in thickness from 25 to 200 BL and HNO₃ coverages varied from 0.5 to 3.0 BL.

B. Desorption of Pure and HCl-Dosed Crystalline Ice Multilayers. LITD techniques were also used to monitor the effect of HCl on the D₂O isothermal desorption rate from crystalline D₂O ice multilayers. The normalized D₂O LITD signals versus time for the isothermal desorption of a pure D₂O ice film and a HCl-dosed D₂O ice film at T = 165.0 K are shown together in Figure 3. The initial D₂O coverages were 80 BL and the HCl adlayer thickness was 2 BL as measured by LITD probing prior to isothermal desorption. The D₂O LITD signals for the pure D₂O ice multilayer and the HCl-dosed D₂O ice multilayer are denoted by the open triangles and solid squares, respectively.

The normalized D₂O LITD signal for the pure ice film again decays linearly versus time and is consistent with zero-order desorption kinetics. The LITD results show that the 80 BL pure D₂O ice multilayer is thermally desorbed in \sim 400 s and

Figure 4. Arrhenius plot of D₂O desorption rates from crystalline D₂O ice multilayers. The desorption kinetic parameters for pure ice are E_d = 13.7 kcal/mol and $\nu_o = 3.3 \times 10^{32}$ molecules/(cm² s). The desorption kinetic parameters for HNO₃-dosed ice are $E_d = 11.3$ kcal/mol and $\nu_o = 5.0 \times 10^{28}$ molecules/(cm² s). The desorption kinetic parameters for HCl-dosed ice are $E_d = 14.2$ kcal/mol and $\nu_o = 3.7 \times 10^{33}$ molecules/(cm² s).

corresponds to a desorption rate of $\sim 2.1 \times 10^{14}$ molecules/ (cm² s) or ~ 0.2 BL/s at T = 165.0 K. In contrast, the 80 BL D₂O ice multilayer exposed to HCl desorbs appreciably faster compared with the pure D₂O ice film. The 80 BL D₂O ice film with a 2 BL HCl adlayer required only ~ 210 s to desorb completely. This result corresponds to a desorption rate of $\sim 4.0 \times 10^{14}$ molecules/(cm² s) or ~ 0.4 BL/s.

In contrast to the HNO₃-dosed ice multilayers, Figure 3 clearly demonstrates that the isothermal D₂O desorption rate is enhanced by a factor ~ 2 in the presence of HCl at T = 165.0 K. This desorption rate enhancement was measured for HCl-dosed D₂O ice multilayers for temperatures from 150 to 170 K. For these measurements, the ice multilayers ranged in thickness from 25 to 200 BL of D₂O and initial HCl coverages varied from 0.3 to 5.0 BL of HCl.

C. Arrhenius Analysis of D₂O Desorption. The temperature dependence of the D₂O desorption rates for pure and HNO₃- and HCl-dosed crystalline ice multilayers were investigated to extract the desorption kinetics parameters. Arrhenius plots of the measured D₂O desorption rates are shown in Figure 4. The desorption results for the pure and HNO₃- and HCl-dosed ice multilayers are represented by the open triangles, solid circles, and solid squares, respectively. The solid lines represent least-squares linear regressions of the Arrhenius desorption data.

Arrhenius analysis of the D₂O desorption rates yielded the desorption activation energies and desorption preexponentials. For pure D₂O ice multilayers, the kinetic parameters were $E_d = 13.7 \pm 0.5$ kcal/mol and $\nu_o = (3.3 \pm 0.7) \times 10^{32}$ molecules/(cm² s). For HNO₃-dosed ice films, the kinetic parameters were $E_d = 11.3 \pm 0.4$ kcal/mol and $\nu_o = (5.0 \pm 0.9) \times 10^{28}$ molecules/(cm² s). The kinetic parameters for D₂O desorption from HCl-dosed ice multilayers were $E_d = 14.2 \pm 0.6$ kcal/mol and $\nu_o = (3.7 \pm 0.8) \times 10^{33}$ molecules/(cm² s).

D. Isothermal Desorption of DNO₃ and DCl from Crystalline Ice Multilayers. The isothermal desorption of DNO₃ and DCl from the crystalline ice multilayer can also be monitored using LITD probing. Figure 5 shows a comparison between the D₂O and DNO₃ LITD signals during isothermal desorption at 160.0 K for a D₂O ice multilayer with an initial coverage of 40 BL. The initial coverage of DNO₃ was 2.8 BL as measured by the HDO LITD signal resulting from H/D isotopic exchange

Figure 5. DNO₃ and D₂O coverages versus time for isothermal desorption at 160.0 K of a 40 BL D₂O ice multilayer with \sim 3 BL of HNO₃. The DNO₃ and D₂O LITD signals are denoted by the solid circles and open triangles, respectively.

Figure 6. DCl and D_2O coverages versus time for isothermal desorption at 155.0 K of a 62 BL D_2O ice multilayer with \sim 2 BL of HCl. The DCl and D_2O LITD signals are denoted by the solid squares and open triangles, respectively.

after HNO_3 exposure. The D₂O LITD signals are shown by the open triangles. The DNO₃ LITD signals are displayed by the solid circles.

Figure 5 reveals that D_2O is lost linearly versus time from the HNO₃-dosed D_2O multilayer in agreement with zero-order desorption kinetics. Notice that the D_2O desorption rate is not sensitive to the absolute DNO₃ coverage. Figure 5 shows that the D_2O multilayer is desorbed at a constant rate for DNO₃ coverages varying from 3.0 to 0.1 BL. In contrast, the DNO₃ LITD signals do not display a linear loss versus time. The absolute initial DNO₃ desorption rate of ~0.01 BL/s is less than the absolute D_2O desorption rate of ~0.02 BL/s at 160.0 K. The nonlinear desorption behavior for DNO₃ is attributed to the competition between DNO₃ isothermal desorption and DNO₃ diffusion into the underlying ice film.^{37,38,40,41,72}

Figure 6 compares the D_2O and DCl LITD signals during isothermal desorption at 155.0 K for a D_2O ice multilayer with an initial coverage of 62 BL. The initial coverage of DCl was 2.2 BL as measured by the HDO LITD signal resulting from H/D isotopic exchange after HCl exposure. The D_2O LITD signals are designated by the open triangles and the DCl LITD signals are shown by the solid squares.

Figure 6 shows that D₂O loss is linear versus time from the HCl-dosed D₂O multilayer as expected from zero-order desorption kinetics. Like the previous measurements for DNO₃, the D₂O desorption rate is not dependent on the absolute DCl coverage. The D₂O multilayer is desorbed at a constant rate for DCl coverages that range from 2.2 to 0.1 BL. The DCl LITD signals do not display a linear loss versus time. The absolute initial desorption rate of $\sim 6.0 \times 10^{-3}$ BL/s for DCl is less than

the absolute desorption rate of ~ 0.03 BL/s for D₂O at 155.0 K. Similar to DNO₃, the nonlinear loss of DCl is assigned to the concurrent DCl isothermal desorption and DCl diffusion into the underlying ice multilayer.^{37,38,40,41,72}

IV. Discussion

A. Effect of DNO₃ and DCl on D₂O Isothermal Desorption Kinetics. The D₂O desorption kinetics from crystalline D₂O ice multilayers on Ru(001) were altered significantly upon exposure to HNO₃ and HCl. The absolute D₂O desorption rates from HNO₃-dosed crystalline ice were \sim 3–5 times slower compared with D₂O desorption from pure D₂O ice films over the temperature range *T* = 150–171 K. In contrast, the absolute D₂O desorption rates were \sim 2 times faster for crystalline ice films exposed to HCl.

Although the effect of solutes on the evaporation rate of liquid H₂O has been examined extensively,^{73–77} limited work exists with regard to the effects of adsorbates on the desorption of H₂O ice.^{44,47–49} Recent cold chamber experiments have examined the uptake of several atmospheric trace gases on ice and the effects of these gases on the evaporation rate of macroscopic (4–10 mm diameter) ice hemispheres and dendritic ice crystals.⁴⁹ These evaporation studies measured the mass loss versus time from ice particles that had been exposed to HNO₃, SO₂, and mixtures of SO₂ and H₂O₂. Ice crystals containing HNO₃ and SO₂ impurities were observed to evaporate isothermally up to 30% slower compared with the evaporation rate of pure ice particles at T = 254 K.⁴⁹

Vacuum microbalance techniques have been utilized to study the influence of various lattice and surface-localized impurities on the vaporization rate of ice single crystals.⁴⁴ These vaporization studies measured the H₂O desorption rate from crystalline ice doped with monovalent species such as HF, HNO₃, NH₄OH, and NaOH. Ice doped with ionic impurities was observed to desorb at steady-state rates that were slower compared with pure crystalline ice at temperatures from T = 183-233 K.⁴⁴

The influence of a variety of gases was also investigated using the microbalance techniques.⁴⁴ H₂, He, N₂, O₂, and CO₂ were found to decrease slightly the H₂O desorption rate from singlecrystal ice. In these studies, the impurity gas flux incident on the ice surface and the ice vaporization flux were of similar magnitude. The observed decrease in the desorption rate was attributed to gas-phase collisions occurring near the vaporizing ice surface.⁴⁴ In contrast, the presence of HF on the ice surface was measured to increase the H₂O desorption rate from singlecrystal ice.⁴⁴ The desorption rate of ice exposed to HF was ~1.6 times faster than the desorption rate of pure crystalline ice at T= 214 K.

Incorporation of HF into the ice lattice is believed to occur in a substitutional manner.^{78–80} Due to the proton deficiency of the HF molecule, lattice substitution results in the formation of a L-type (L = Leer or empty) Bjerrum defect.^{78–80} The generation of a Bjerrum orientational L-defect will produce a pair of neighboring O-atoms without an intervening H-atom. The HF-induced orientational Bjerrum defects can act to rupture the ordered hydrogen bonding network on the ice surface and alter H₂O desorption rates. Further evidence of HF-induced defect formation and disruption of the surface hydrogen bonding network is corroborated by the observed softening of ice by HF.^{81,82}

Similar to HF, substitutional incorporation of HCl into the ice lattice is expected and has been inferred from dielectric relaxation measurements⁸³ on HCl-doped ice and molecular dynamics simulations⁸⁴ of HCl ionization on ice. The formation

of L-defects by HCl or its ionization products may disrupt and weaken the hydrogen bonds in the top layers on the ice multilayer and enhance the H₂O desorption rates. Perturbations of the ice by HCl and the formation of L-defects are further corroborated by measurements of HCl-induced ice softening.⁸⁵

H₂O desorption is also believed to be rate-limited by the population of highly mobile H₂O precursor molecules that are hydrogen-bonded to only one nearest neighbor.⁴⁴ The production of these highly mobile H₂O molecules may be altered by surface impurities that affect the hydrogen bonding network on the ice surface. Recent LITD diffusion experiments have revealed that HDO diffusion in HCl-dosed D₂O ice multilayers occurs ~10–20 times faster compared with HDO diffusion in pure D₂O crystalline ice for temperatures from 146 to 161 K.^{40,72} This enhanced mobility may increase the desorption rate by allowing the population of the highly mobile H₂O precursors to H₂O desorption to be replenished at a faster rate.

If H₂O desorption is rate-limited by the production of highly mobile H₂O precursors, the kinetics for H₂O diffusion may directly affect the H₂O desorption kinetics. Previous LITD studies of HDO diffusion in ice exposed to HCl measured a HDO diffusion activation energy of $E_A = 19.0 \pm 0.3$ kcal/mol and a diffusion preexponential of $D_o = (2.4 \pm 0.1) \times 10^{12}$ cm²/s for temperatures T = 146-161 K.^{40,72} These HDO diffusion parameters in HCl-dosed ice are larger than the kinetic parameters of $E_A = 17.0 \pm 1.0$ kcal/mol and $D_o = (4.2 \pm 0.8) \times 10^8$ cm²/s measured for pure ice.^{37,38,72} In accord with a diffusion-limited desorption process, the larger kinetic parameters for D₂O desorption from HCl-dosed ice may reflect the larger diffusion activation barrier and diffusion preexponential for D₂O diffusion in HCl-dosed ice.

In contrast to the results for HCl-dosed ice, the D₂O desorption rates from HNO₃-dosed ice multilayers were measured to be lower than the D₂O desorption rates from pure ice. The different effect of HNO₃ on D₂O desorption suggests that a different mechanism is applicable. Instead of substitutional incorporation and an increase in ice lattice defect density, HNO₃ can ionize and form stable hydrate cages with H₂O.⁸⁶ For example, X-ray crystallography⁸⁷ and ab initio quantum mechanical studies⁸⁶ on solid nitric acid monohydrate (NAM) are consistent with a crystal structure comprised of NO₃⁻ and H₃O⁺ ions. In the orthorhombic NAM crystal lattice, the nitrate and hydronium ions are bound by Coulomb forces.⁸⁶ Each NO₃⁻ ion is hydrogen bonded to three neighboring H₃O⁺ ions.⁸⁶

The reduced D₂O desorption rate from HNO₃-dosed ice multilayers may be partly attributable to the increased stability of the nitric acid-hydrate cages. The strong Coulomb and hydrogen bond interactions in the hydrate cage structure may act to bind H₂O molecules and limit their desorption. FTIR results are consistent with the enhanced stability of H₂O:HNO₃ hydrates.⁴⁸ These FTIR studies showed that HNO₃ adsorption on pure ice in the form of nitric acid trihydrate (NAT) and nitric acid monohydrate (NAM), or a combination of NAT/NAM, inhibited the evaporation of the underlying ice film.⁴⁸

HNO₃ exposure to crystalline ice also reduces the mobility of H₂O molecules in ice. Evidence for decreased H₂O mobility in HNO₃-dosed ice is provided by recent LITD measurements.^{40,72} These LITD investigations revealed that the presence of HNO₃ decreased the HDO diffusion rate by a factor of \sim 30– 70 compared with HDO diffusion in pure D₂O ice over the temperature range from T = 150 K to T = 173 K.^{40,72} The reduced H₂O mobility in HNO₃-dosed ice may decrease the H₂O desorption by lowering the concentration of highly mobile H₂O precursors to H₂O desorption. On the basis of a diffusion-limited desorption mechanism, the H₂O diffusion kinetics may directly influence the H₂O desorption kinetics. LITD measurements of HDO diffusion in HNO₃-dosed ice revealed that the HDO diffusion kinetic parameters are appreciably reduced compared with the HDO diffusion kinetic parameters in pure ice.^{40,72} Temperaturedependent LITD experiments measured an activation energy of $E_A = 13.2 \pm 1.4$ kcal/mol and a preexponential of $D_o = 71.9 \pm 9.2$ cm²/s for HDO diffusion in HNO₃-dosed ice over the temperature range T = 150-173 K.^{40,72} The smaller kinetic parameters for HDO diffusion in HNO₃-dosed ice may yield the smaller activation energy and preexponential for D₂O desorption from HNO₃-dosed ice.

B. Coverage-Independent Effect of DNO₃ and DCl on D₂O Desorption. The isothermal LITD results shown in Figures 5 and 6 demonstrate that the D₂O desorption rates from HNO₃and HCl-dosed D₂O ice multilayers are independent of the absolute DNO₃ and DCl coverage. The LITD data presented in Figure 5 reveal that only small DNO₃ coverages are necessary to decrease the D₂O isothermal desorption rate. The D₂O desorption rate is independent of the absolute DNO₃ coverage and the isothermal D₂O desorption rate remains constant at ~0.02 BL/s for DNO₃ coverages varying from 0.1 to 3.0 BL.

The isothermal desorption data in Figure 6 also indicates that only the presence of small DCl coverages are required to enhance the D₂O desorption rate. The D₂O desorption rate is independent of the absolute DCl coverage and the isothermal D₂O desorption rate remains constant at ~0.03 BL/s for DCl coverages varying from 0.1 to 2.2 BL. The lack of coverage dependence suggests that only a minimum DNO₃ and DCl coverage is required to perturb the D₂O ice surface and alter the D₂O desorption kinetics.

The small DNO₃ and DCl coverages of ≥ 0.1 BL needed to affect the D₂O desorption kinetics are probably related to the ability of HNO₃ and HCl to disrupt the hydrogen bonding network on the ice surface. HCl may enter the ice lattice substitutionally upon dissolution^{78–80} or ionize at the ice surface.^{67,84,88–90} Each Cl⁻ ion could directly perturb at least four H₂O molecules in the ice lattice.⁸⁴ The computer simulations also show that both trigonal and tetrahedral solvation of the H₃O⁺ by H₂O are energetically favorable.⁸⁴ Given the high directionality of hydrogen bonding, small coverages of Cl⁻ and H₃O⁺ could significantly perturb the entire hydrogen bonding network on the ice surface and into the ice lattice. Once this hydrogen bonding network is disrupted, additional HCl may not further change the surface configurations.

Ab initio quantum mechanical studies have shown that HNO₃ ionizes and forms stable hydrate cages with H₂O.⁸⁶ The HNO₃- hydrate cages are typically found in the form of either nitric acid trihydrate (NAT) or nitric acid monohydrate (NAM). In crystalline NAM, each NO₃⁻ ion is H-bonded to three nearest-neighbor H₃O⁺ ions.⁸⁶ Consequently, a HNO₃ surface coverage of ~0.3 BL may be sufficient to perturb all the H₂O molecules in the topmost bilayer of the ice multilayer. The perturbations induced by the NO₃⁻ ions may be propagated along the ice surface and into the ice lattice. Additional HNO₃ coverage may not continue to alter the hydrogen bonding network after this network is initially disturbed by HNO₃.

C. H₂O Desorption Kinetics and Equilibrium Vapor Pressures at Atmospheric Temperatures. The Arrhenius desorption results shown in Figure 4 for pure crystalline ice and crystalline ice exposed to HNO₃ and HCl reveal the dramatic effect of surface-adsorbed impurities on the D₂O desorption kinetics. The D₂O desorption kinetics can be extrapolated to

Figure 7. Desorption rate versus ice surface temperature for pure ice, ice with HNO₃ coverages ≥ 0.1 BL, and ice with HCl coverages ≥ 0.1 BL. The measured desorption rates are represented by the solid lines for T = 150-171 K. Extrapolated rates for higher temperatures of T = 172-250 K that contain stratospheric and upper tropospheric temperatures are denoted by the dashed lines.

temperatures T = 180-250 K that are relevant in the polar stratosphere and upper troposphere. Figure 7 shows the D₂O desorption rate versus ice surface temperature T = 150-250 K. The D₂O desorption rates measured in this study from T = 150 K to T = 171 K are denoted by the solid lines. Extrapolated desorption rates for higher temperatures that contain stratospheric and upper tropospheric temperatures are represented by the dashed lines for T = 172-250 K.

Figure 7 shows that the presence of HNO₃ on the ice surface should appreciably decrease the D₂O desorption rates from crystalline ice by factors of \sim 3–53. In contrast, the D₂O desorption rates from ice multilayers containing HCl should be enhanced by factors of \sim 2–4. These changes in the D₂O desorption rates will affect the formation and stability of ice cloud particles. Changes in the stability and lifetimes of atmospheric ice crystals may subsequently alter heterogeneous atmospheric chemistry.

For example, the presence of nitric acid markedly inhibits the D₂O desorption rate from crystalline ice. This decrease in the desorption rate will increase the lifetime of ice cloud particles. HNO₃ is present in the stratosphere at partial pressures of $\sim 3 \times 10^{-7}$ Torr.^{59,91} These HNO₃ partial pressures are sufficient to establish HNO₃ coverages of ~ 2 BL in 3 s assuming a unity HNO₃ sticking coefficient and no competing HNO₃ desorption. An increased lifetime for ice cloud particles containing HNO₃ coverage will prolong the time period for heterogeneous chemical processing on PSCs and cirrus clouds. The extended lifetime of the ice crystals may also contribute to dehydration in the lower stratosphere,^{32,33,92} and glaciation of lower-level clouds and storm development.^{50,93,94}

The D₂O desorption kinetics can be used to calculate the equilibrium D₂O vapor pressures above pure and HNO₃- and HCl-dosed crystalline ice. To equate desorption and adsorption rates at equilibrium, these calculations assume a unity sticking coefficient on pure and HNO₃- and HCl-dosed ice. A sticking coefficient of $S \approx 1$ has been determined recently on pure crystalline ice using molecular beam and optical interference measurements.³⁵ Although a unity sticking coefficient is likely on HNO₃- and HCl-dosed ice, the interpretation of recent evaporation experiments suggests that HNO₃ may lower the H₂O sticking coefficient on ice.⁹⁵ Because this issue is unresolved, this analysis will proceed assuming a unity sticking coefficient.

The maximum theoretical rate of evaporation, E_{max} , of a molecule from a bulk solid is defined from gas kinetic theory as

$$E_{\rm max} = P_{\rm v} (2\pi m k T_{\rm s})^{-1/2} \tag{1}$$

Assuming a unity sticking coefficient, P_v is the vapor pressure that would be present for a system at equilibrium. Likewise, T_s is the surface temperature, *m* is the mass of the molecule, and *k* is the Boltzmann gas constant. The experimentally measured evaporation rate, E_{exp} , is related to the maximum theoretical evaporation rate by $E_{exp} = \gamma E_{max}$, where γ represents the evaporation coefficient. Measured evaporation coefficients for H₂O ice have been reported to vary from $\gamma = 0.006$ to $\gamma = 1.0$ using a variety of experimental techniques.^{34,96–99} Despite the variation in the measured values for the evaporation coefficient, γ is generally assumed to be unity.^{98–105}

By using $\gamma = 1.0$, E_{max} in eq 1 can be replaced by the measured zero-order desorption rate. The zero-order desorption rate at an ice surface temperature, T_{s} , can then be related to P_{v} according to

$$d\Theta/dt = v_0 \exp[-E_d/RT_s] = P_v (2\pi m k T_s)^{-1/2}$$
(2)

where $E_{\rm d}$ is the desorption activation energy and $\nu_{\rm o}$ is the zeroorder desorption preexponential factor. Solving for $P_{\rm v}$ yields the following relation for the equilibrium vapor pressure:

$$P_{\rm v} = v_{\rm o} (2\pi m k T_{\rm s})^{1/2} \exp[-E_{\rm d}/RT_{\rm s}]$$
(3)

Figure 8 shows the calculated equilibrium water vapor pressures for pure and HNO₃- and HCl-dosed D₂O ice versus ice surface temperature at T = 180-250 K. The vapor pressures for pure ice were determined to vary from $P_v \approx 1.2 \times 10^{-5}$ Torr at T = 180 K to $P_v \approx 0.7$ Torr at T = 250 K. These predicted vapor pressures for pure crystalline D₂O ice are in good agreement with vapor pressure measurements for D₂O ice at temperatures T = 193-235 K.¹⁰⁶ Accounting for the different desorption rates from D₂O and H₂O ices,⁴⁶ the D₂O vapor pressures for pure D₂O ice shown in Figure 8 are also consistent with previous H₂O vapor pressure measurements.^{42,43,107,108}

The suppression of the D₂O desorption rate by HNO₃ is reflected dramatically in the derived vapor pressures for ice containing HNO₃ shown in Figure 8. The vapor pressures determined from the D₂O desorption kinetics varied from $P_v \approx$ 1.6×10^{-6} Torr at T = 180 K to $P_v \approx 0.01$ Torr at T = 250 K. The presence of HNO₃ on the ice surface decreases the D₂O vapor pressure by factors of ~8–70 compared with the vapor pressures for pure ice at T = 180-250 K. Consequently, HNO₃ decreases the minimum H₂O pressure and/or increases the maximum temperature for PSC and cirrus cloud stability.

The vapor pressure of pure ice was determined to be $P_v \approx 6.0 \times 10^{-4}$ Torr at T = 200 K. For an atmospheric ice particle to be stable, equilibrium or net growth conditions must exist where the H₂O adsorption rate onto the ice particle is equal to or greater than the H₂O desorption rate. Figure 8 shows that an ice crystal with HNO₃ coverages ≥ 0.1 BL can increase its temperature to T = 221 K and still maintain a desorption rate that is less than or equal to the adsorption rate resulting from a H₂O vapor pressure of $P_v = 6.0 \times 10^{-4}$ Torr. Likewise, Figure 8 indicates that the D₂O vapor pressure for HNO₃-dosed ice at T = 200 K is $P_v \approx 3.8 \times 10^{-5}$ Torr. This lowering of the D₂O vapor pressure indicates that ice particles containing HNO₃ can survive at markedly smaller H₂O vapor pressures than pure ice particles.

In contrast to the results for HNO₃, the vapor pressures for ice with HCl coverages ≥ 0.1 BL shown in Figure 8 are much larger than pure ice. These equilibrium vapor pressures for HCldosed ice are $\sim 3-4$ times higher than the vapor pressures for

Figure 8. Equilibrium vapor pressure versus ice surface temperature for pure ice, ice with HNO₃ coverages ≥ 0.1 BL, and ice with HCl coverages ≥ 0.1 BL at temperatures of T = 180-250 K that are relevant in the stratosphere and upper troposphere.

pure ice at temperatures T = 180-250 K. This increase in vapor pressure decreases the lifetime of atmospheric ice particles containing HCl. The vapor pressure for an ice film exposed to HCl was determined to be $P_v \approx 1.9 \times 10^{-3}$ Torr at T = 200 K. To obtain the equilibrium vapor pressure of $P_v \approx 6.0 \times 10^{-4}$ Torr for pure ice at 200 K, the temperature of the HCl-exposed ice particle must be lowered from 200 to 194 K. Alternatively, the H₂O vapor pressure must be increased to $P_v \approx 1.9 \times 10^{-3}$ Torr at T = 200 K to maintain an equivalence between the adsorption and desorption rates.

V. Conclusions

The absolute D₂O desorption rates from pure and HNO₃- and HCl-dosed crystalline D₂O ice multilayers on Ru(001) were measured using laser-induced thermal desorption (LITD) techniques. The presence of the acid impurities has a dramatic impact on the D₂O desorption rates. HNO₃ coverages ≥ 0.1 BL lowered the D₂O desorption rate by a factor of \sim 3–5 over the temperature range T = 150-171 K. Arrhenius analysis of the D₂O desorption rates from D₂O ice containing HNO₃ yielded a desorption activation energy of $E_d = 11.3 \pm 0.4$ kcal/mol and a zero-order desorption preexponential of $\nu_0 = (5.0 \pm 0.9) \times$ 10^{28} molecules/(cm² s). For D₂O ice multilayers with HCl coverages >0.1 BL, the absolute D₂O desorption rates were enhanced by a factor of ~ 2 for T = 150-170 K. The D₂O desorption kinetics from D_2O ice containing HCl were $E_d =$ 14.2 \pm 0.6 kcal/mol and $\nu_{\rm o}$ = (3.7 \pm 0.8) \times 10³³ molecules/ (cm² s). For comparison, the desorption parameters for D₂O desorption from pure D₂O ice were $E_d = 13.7 \pm 0.5$ kcal/mol and $\nu_0 = (3.3 \pm 0.7) \times 10^{32}$ molecules/(cm² s).

The effects of the acid impurities on the D₂O desorption kinetics are associated with changes in the hydrogen bonding network and perturbed D₂O mobility in ice. For HNO₃-dosed D_2O ice multilayers, the decrease in the D_2O desorption rate is attributed to stable HNO3-hydrate cage formation and reduced D₂O mobility in the ice lattice. In contrast, the increase in the D₂O desorption rate from HCl-dosed D₂O ice multilayers is assigned to Bjerrum L-defect formation, disruption of the hydrogen-bonding network and enhanced D₂O mobility in the ice lattice. The HNO3 and HCl impurities are predicted to alter D₂O desorption rates significantly at stratospheric and upper tropospheric temperatures of 180-250 K. Assuming a unity sticking coefficient, the smaller D₂O desorption rates for ice with HNO₃ coverages ≥ 0.1 BL will lower the D₂O vapor pressure and enhance the stability of atmospheric ice particles. Conversely, the higher D₂O desorption rates for ice with HCl coverages ≥ 0.1 BL will increase the D₂O vapor pressure and lower the stability of atmospheric ice particles. Alterations in the growth, formation, and stability of atmospheric ice crystals will subsequently affect heterogeneous atmospheric chemistry.

Acknowledgment. This work was supported by the National Science Foundation under Grant CHE-9528473.

References and Notes

(1) Molina, M. J.; Tso, T. L.; Molina, L. T.; Wang, F. C. Y. Science **1987**, 238, 1253.

- (2) Tolbert, M. A.; Rossi, M. J.; Malhotra, R.; Golden, D. M. Science **1987**, 238, 1258.
- (3) Solomon, S.; Garcia, R. R.; Rowland, F. S.; Wuebbles, D. J. *Nature* **1986**, *321*, 755.
- (4) Turco, R. P.; Toon, O. B.; Hamill, P. J. Geophys. Res. 1989, 94, 16493.
- (5) Hanson, D. R.; Ravishankara, A. R. J. Geophys. Res. 1991, 96, 5081.
- (6) Kouchi, A. J. Cryst. Growth 1990, 99, 1220.
 - (7) Grim, R. J. A.; Greenberg, J. M. Astr. Astrophys. 1987, 181, 155.
 - (8) Mayer, E.; Pletzer, R. Nature 1986, 319, 298.
 - (9) Mukai, T. Astr. Astrophys. 1986, 164, 397.
- (10) Klinger, K., Benest, D., Dollfus, A., Smoluchowski, R., Eds. *Ices in the Solar System*; Reidel: Dordrecht, 1985.
- (11) Mendis, D. A.; Houpis, H. L. F.; Marconi, M. L. Fundam. Cosmic Phys. 1985, 10, 1.
- (12) Delsemme, A. H. Comets; University of Arizona Press: Tucson, 1982; p 85.
 - (13) Solomon, S. Rev. Geophys. 1988, 26, 131.
 - (14) Tabazadeh, A.; Turco, R. P. J. Geophys. Res. 1993, 98, 12727.
 - (15) Toon, O. B.; Turco, R. P.; Westphal, D.; Malone, R.; Liu, M. S. J.
- Atmos. Sci. 1988, 45, 2123.
 - (16) See entire issue Geophys. Res. Lett. 1990, 17, 313.
 - (17) Leu, M.-T. Geophys. Res. Lett. 1988, 15, 851.
 - (18) Leu, M.-T. Geophys. Res. Lett. 1988, 15, 17.
- (19) Borrmann, S.; Solomon, S.; Dye, J. E.; Luo, B. Geophys. Res. Lett.
- 1996, 23, 2133.
 (20) Jensen, E. J.; Toon, O. B.; Selkirk, H. B.; Spinhirne, J. D.;
 Schoeberl, M. R. J. Geophys. Res. 1996, 101, 21361.
- (21) Zondlo, M. A.; Barone, S. B.; Tolbert, M. A. *Geophys. Res. Lett.* **1997**, *24*, 1391.
- (22) Abbatt, J. P. D. Geophys. Res. Lett. 1997, 24, 1479.
- (23) Ramanathan, V.; Collins, W. Nature 1991, 351, 27.
- (24) Stephens, G. L.; Tsay, S.-C.; Stackhouse, J., P. W.; Flatau, P. J. J. Atmos. Sci. **1990**, 47, 1742.
- (25) Ackerman, T. P.; Liou, K.-N.; Valero, F. P. J.; Pfister, L. J. Atmos. Sci. 1988, 45, 1606.
- (26) Dye, J. E.; Baumgardner, D.; Gandrud, B. W.; Kawa, S. R.; Kelly,
- K. K.; Loewenstein, M.; Ferry, G. V.; Chan, K. R.; Gary, B. L. J. Geophys. Res. 1992, 97, 8015.
- (27) Anderson, J. G.; Toon, O. B. *Geophys. Res. Lett.* **1993**, *20*, 2499.
 (28) Ravishankara, A. R.; Hanson, D. R. J. *Geophys. Res.* **1996**, *101*, 3885.
- (29) Hanson, D. R.; Ravishankara, A. R.; Solomon, S. J. Geophys. Res. 1994, 99, 3615.
- (30) Hanson, D. R.; Ravishankara, A. R. J. Phys. Chem. 1994, 98, 5728.
 (31) Gage, K. S.; McAfee, J. R.; Carter, D. A.; Ecklund, W. L.; Riddle,
- A. C.; Reid, G. C.; Balsley, B. B. Science **1991**, 254, 1771.
 - (32) Danielsen, E. F. J. Geophys. Res. 1993, 98, 8665.
- (33) Danielsen, E. F. Geophys. Res. Lett. 1982, 9, 605.
- (34) Haynes, D. R.; Tro, N. J.; George, S. M. J. Phys. Chem. 1992, 96, 8502.
- (35) Brown, D. E.; George, S. M.; Huang, C.; Wong, E. K. L.; Rider, K. B.; Smith, R. S.; Kay, B. D. J. Phys. Chem. **1996**, 100, 4988.
- (36) Brown, D. E.; George, S. M. J. Phys. Chem. 1996, 100, 15460.
 (37) Livingston, F. E.; Whipple, G. C.; George, S. M. J. Phys. Chem.
- **1997**, *101*, 6127. (38) Livingston, F. E.; Whipple, G. C.; George, S. M. J. Chem. Phys.
- (30) Livingson, T. E., Winpple, G. C., George, S. M. J. Chem. Thys **1998**, 108, 2197.
- (39) Livingston, F. E.; Smith, J. A.; George, S. M. Surf. Sci., in press.
 (40) Livingston, F. E.; George, S. M. J. Phys. Chem. B 1998, submitted for publication.
- (41) George, S. M.; Livingston, F. E. Surf. Rev. Lett. 1997, 4, 771.
- (42) Sack, N. J.; Baragiola, R. A. Phys. Rev. B: Condens. Matter 1993, 48, 9973.
- (43) Bryson, C. E., III; Cazcarra, V.; Levenson, L. L. J. Chem. Eng. Data 1974, 19, 107.

(44) Davy, J. G.; Somorjai, G. A. J. Chem. Phys. 1971, 55, 3624.

- (45) Hinch, B. J.; Dubois, L. H. J. Chem. Phys. 1991, 96, 3262.
- (46) Livingston, F. E.; Smith, J. A.; George, S. M. 1998, manuscript in preparation.
- (47) Koehler, B. G.; McNeill, L. S.; Middlebrook, A. M.; Tolbert, M. A. J. Geophys. Res. **1993**, 98, 10563.
- (48) Tolbert, M. A.; Middlebrook, A. M. J. Geophys. Res. 1990, 95, 22423.
- (49) Diehl, K.; Mitra, S. K.; Pruppacher, H. R. Atmos. Res. 1998, 47-48, 235.
- (50) Chen, J.-P.; Crutzen, P. J. J. Geophys. Res. 1994, 99, 18847.
- (51) Nelson, J. T.; Baker, M. B. J. Geophys. Res. 1996, 101, 7033.
- (52) Mak, C. H.; Brand, J. L.; Deckert, A. A.; George, S. M. J. Chem. Phys. **1986**, 85, 1676.
- (53) Deckert, A. A.; Brand, J. L.; Arena, M. V.; George, S. M. Surf. Sci. 1989, 208, 441.
- (54) George, S. M.; DeSantolo, A. M.; Hall, R. B. Surf. Sci. 1985, 159, L425.
 - (55) Warren, S. G. Appl. Opt. 1984, 23, 1206.
 - (56) Brand, J. L.; George, S. M. Surf. Sci. 1986, 167, 341.
- (57) American Institute of Physics Handbook, 3rd ed.: McGraw-Hill Book Co.: New York, 1982.
 - (58) LaPlaca, S.; Post, B. Acta Crystallogr. 1960, 13, 503.
- (59) Hanson, D.; Mauersberger, K. *Geophys. Res. Lett.* 1988, *15*, 855.(60) Hanson, D. R. *Geophys. Res. Lett.* 1990, *17*, 421.
- (61) Worsnop, D. R.; Fox, L. E.; Zahniser, M. S.; Wofsy, S. C. Science **1993**, 259, 71.
- (62) Ritzhaupt, G.; Devlin, J. P. J. Phys. Chem. **1991**, 95, 90.
- (62) Knizhadpi, G., Devini, J. F. S. Phys. Chem. **1991**, 95, 96. (63) Smith, R. H.; Leu, M.-T.; Keyser, L. F. J. Phys. Chem. **1991**, 95,
- (64) Koehler, B. G.; Middlebrook, A. M.; Tolbert, M. A. J. Geophys.
- (64) Koener, B. G., Middleorook, A. M., Toloett, M. A. J. Geophys. Res. 1992, 97, 8065.
- (65) Middlebrook, A. M.; Koehler, B. G.; McNeill, L. S.; Tolbert, M. A. Geophys. Res. Lett. 1992, 12, 2417.
- (66) Gilbert, A. S.; Sheppard, N. J. Chem. Soc., Faraday Trans. 1973, 69, 1628.
- (67) Abbatt, J. P.; Beyer, K. D.; Fucaloro, A. F.; McMahon, J. R.; Woolridge, P. J.; Zhang, R.; Molina, M. J. J. Geophys. Res. **1992**, *97*, 15819.
- (68) Graham, J. D.; Roberts, J. T. J. Phys. Chem. 1994, 98, 5974.
 (69) Foster, K. L.; Tolbert, M. A.; George, S. M. J. Phys. Chem. 1997,
- 101, 4979.(70) Vandoni, M. R. Mem. Serv. Chim. Etat (Paris) 1944, 31, 87.
- (71) Grant, J. T.; Haas, T. W. Surf. Sci. **1970**, 21, 76.
- (72) Livingston, F. E.; George, S. M. Defect and Diffusion Forum, Pt. A 1998, 160-161, 25.
- (73) Langmuir, I. J. Phys. Chem. **1929**, 31, 1719.
- (74) Eisner, H. S.; Quince, B. W.; Slack, C. Discuss. Faraday Soc. 1960, 22, 86.
- (75) Derjaguin, B. V.; Fedoseyev, V. A.; Rosenweig, L. A. J. Colloid Interface Sci. 1966, 22, 45.
 - (76) Snead, C. C.; Zung, J. T. J. Colloid Interface Sci. 1968, 27, 25.
 - (77) Garrett, W. D. J. Atmos. Sci. 1971, 28, 816.
 - (78) Hobbs, P. V. Ice Physics; Clarendon Press: Oxford, 1974.
 - (79) Granicher, H. Phys. Kondens. Mater. 1963, 1, 1.
 - (80) Glen, J. W. Sci. Prog., Oxf. 1969, 57, 1.
 - (81) Jones, S. J. Phys. Lett. 1967, 25A, 366.
 - (82) Jones, S. J.; Glen, J. W. Philos. Mag. 1969, 19, 13.
 - (83) Young, I. G.; Salomon, R. E. J. Chem. Phys. 1968, 48, 1635.
 - (84) Gertner, B. J.; Hynes, J. T. Science 1996, 271, 1563.
 - (85) Nakamura, T.; Jones, S. J. Scr. Met. 1970, 4, 123
- (86) Poshusta, R. D.; Tseng, D. C.; Hess, A. C.; McCarthy, M. I. J. Phys. Chem. 1993, 97, 7295.
- (87) Delaplane, R. G.; Taesler, I.; Olovsson, I. Acta Crystallogr. 1975, B31, 1486.
- (88) Hanson, D. R.; Ravishankara, A. R. J. Phys. Chem. 1992, 96, 2682.
 (89) Chu, L. T.; Leu, M.-T.; Keyser, L. F. J. Phys. Chem. 1993, 97, 7779.
- (90) Delzeit, L.; Powell, K.; Uras, N.; Devlin, P. J. Phys. Chem. B 1997, 101, 2327.
- (91) Peter, T.; Bruhl, C.; Crutzen, P. J. Geophys. Res. Lett. 1991, 18, 1465.
 - (92) Ramaswamy, V. Geophys. Res. Lett. 1988, 15, 863.
 - (93) Braham, R. R. J. Atmos. Sci. 1967, 24, 311.

(98) Tschudin, K. Helv. Phys. Acta 1946, 19, 91.

1815.

- (94) Braham, R. R.; Spyers-Duran, P. J. Appl. Meterol. **1967**, 6, 1053.
- (95) Biermann, U. M.; Crowley, J. N.; Huthwelker, T.; Moortgat, G.
- K.; Crutzen, P. J.; Peter, T. Geophys. Res. Lett. 1998, submitted for publication.
- (96) Schulze, F.-W.; Cammenga, H. K. Ber. Bunsen-Ges. Phys. Chem.
 1980, 84, 163.
 (97) Mills, A. F.; Seban, R. A. Int. J. Heat Mass Transfer 1967, 10,

(99) Alty, T.; Mackay, C. A. Proc. R. Soc. London 1935, 149, 104.

- (100) Kramers, H.; Stemerding, S. Appl. Sci. Res. A **1953**, *3*, 73. (101) Warner, J. J. Atmos. Sci. **1969**, 26, 1272.
- (102) Sinarwalla, A. M.; Alofs, D. J.; Carstens, D. J. J. Atmos. Sci. 1975, 32, 592.
- (103) Narusawa, M.; Springer, G. S. J. Colloid Interface Sci. 1975, 50, 392.
- (104) Pruger, W. Z. Phys. 1940, 115, 202.

(105) Delaney, L. J.; Houston, R. W.; Eagleton, L. C. Chem. Eng. Sci. **1964**, *19*, 105.

- (106) Heras, J. M.; Asensio, M. C.; Estiu, G.; Viscido, L. Chem. Scr. **1984**, 23, 245.
- (107) Marti, J.; Mauersberger, K. *Geophys. Res. Lett.* 1993, 20, 363.
 (108) Jancso, G.; Pupezin, J.; Alexander Van Hook, W. J. Phys. Chem.
 1970, 74, 2984.